
Gameprogramming WS 13/14 Group Teetair

Teeter Level Encoding

Stefan Neubert

January 19 to March 26, 2014

Stefan Neubert Teeter Level Encoding 1



Gameprogramming WS 13/14 Group Teetair

1 Introduction

In contrast to the wooden teeter game, our implementation enables us to create interactive
levels which change their layout while playing.

These levels have to be stored in such way that they provide enough possibilities for
creative level design and are easy to en- and decode. Additionally, we would like them to
be accessible without special software and interpretable without programming knowledge.

A typical data format would be xml, which we found to be too hard to read by
humans, or an ascii-art representation, which would make it complicated to encode all
needed information in a interpretable way.

We chose PNG graphics to be our source format for teeter levels. By basing the levels
on an image format, it is possible to open the level file in a standard image viewer and
still see the most important level structures. Because each pixel in RGBA is encoded with
4∗8 = 32bit we have enough bytes to store the three properties a block of the Teeter-board
is defined by:

Firstly, blocks may have different shapes. Generally speaking these include walls, holes
and ground. But to be able to build ramps etc. the precise shape shall be defined by the
height of the four corners of the block. A block with all heights being 0 is considered to
be a hole and won’t be put in the scene or the physics engine.

Secondly, blocks may define special appearance or actions on ball-contact.
Thirdly, blocks may have an identifier to provide inter-block interaction for those

actions.

2 Encoding

Apart from the most important criteria for the encoding - to be able to represent all three
properties - the encoding has to meet a second criteria which is graphical representation
of the most important properties via the pixel’s color, for a viewer should be able to
recognize a level’s basic structure by looking at the image in a standard image viewer.
This basic structure is given by the shape of a block and top-level type differentiations
such as standard blocks vs. finish area.

Additional properties concerning appearance or behavior customization are second-
level properties, whereas third-level properties include the block’s personal id or id ref-
erences to blocks affected by this block’s actions. Those properties do not need to be
instantly visible to a viewer, but should be encoded in such way, that the decoding pro-
cess (loading of level data in C++) is understandable, and the encoding process (level
design in an 3rd party image editor) is easy.

2.1 General structure

To be able to control the properties separately and still be able to do visual interpretation,
we use the HSB1 color model and map top-level differentiations to Hue. By encoding all
additional properties with Saturation and Brightness, a viewer will still be able to tell

1HSB is equivalent to HSV within our usage, we use the term "Brightness" to avoid confusion between
the numeric value of a property and the Value property.

Stefan Neubert Teeter Level Encoding 2



Gameprogramming WS 13/14 Group Teetair

from the pixel’s color what the corresponding block does, he might though not be able to
tell how the block behaves, for Saturation and Brightness are much harder to interpret.

By mapping the shape to Brightness, we can achieve that the most common shapes
(hole, ground, wall) are distinguishable.

To ensure visual clarity and a sufficient numeric stability during conversion between
the interpretable model (HSB) and the storage model of PNG (RGB), the possible values
are restricted to the rules in the respective component sections.

2.2 Available Types (Hue)

As explained, types are mapped to the pixel’s Hue. Because different editors use different
ranges to represent Hue, we restrict possible values to common integral factors of those
ranges.

Typical ranges are {0 . . . 359} (360), {0 . . . 239} (240) and {0 . . . 255} (256). To ensure
a floating point representation in IEE 754 of the value in the range of {0 . . . 1} (1.0) we
split the ranges in 23 = 8 parts as shown in table 1.

Color example Hue Type Description360 240 256 1.0
0 0 0 0.000 Trap Be victim of something

extremely terrible.
45 30 32 0.125 Item Lose or gain points, lives,

become weightless, . . .
90 60 64 0.250 Standard A block without any abilities for

a simple wall or ground.
135 90 96 0.375 Checkpoint Start, Finish and Checkpoints

between them.
180 120 128 0.500 Elevator Move up or down periodically or

button-triggered.
225 150 160 0.625 Ghost Appear or disappear periodically

or button-triggered.
270 180 192 0.750 Button Trigger the action of all blocks

with the same ID.
315 210 224 0.875 Portal Fall through a wormhole to a

target Portal with the same ID.

Table 1: Overview of possible Hue values for different block types.

Because the Hue cannot be converted to and from rgb without precision loss, decoded
values of ±10 are accepted.

2.3 Shape (Brightness)

Brightness is usually given in percent, most tools offer an integral selection out of {0 . . . 100}.
For the four vertices of a block’s height map we want to be able to set a value out of 0
(no height), 1, 2 (standard height of ground), 3 and 4 (standard height of walls). Each

Stefan Neubert Teeter Level Encoding 3



Gameprogramming WS 13/14 Group Teetair

height will always apply to two adjacent vertices, making it possible to build ramps of all
gradients in all directions.

Holes receive a Brightness of 0, for the resulting black color is easy to spot as a
hole. Additionally, a Brightness of 0 per definition results in no behavior (0 Hue) and no
properties (0 Saturation) - what is exactly the way holes should be. If the user sets a
height of 0 for a block, it will be interpreted as hole (= no block) when decoded again.

The possible block shapes are enumerated according to table 2.

S E Dir Brightness
0 0 - 00
0 1 t 57
0 1 l 58
0 1 b 59
0 1 r 60
0 2 t 61
0 2 l 62
0 2 b 63
0 2 r 64
0 3 t 65
0 3 l 66
0 3 b 67
0 3 r 68
0 4 t 69
0 4 l 70
0 4 b 71
0 4 r 72

S E Dir Brightness
1 1 - 73
1 2 t 74
1 2 l 75
1 2 b 76
1 2 r 77
1 3 t 78
1 3 l 79
1 3 b 80
1 3 r 81
1 4 t 82
1 4 l 83
1 4 b 84
1 4 r 85

S E Dir Brightness
2 2 - 86
2 3 t 87
2 3 l 88
2 3 b 89
2 3 r 90
2 4 t 91
2 4 l 92
2 4 b 93
2 4 r 94
3 3 - 95
3 4 t 96
3 4 l 97
3 4 b 98
3 4 r 99
4 4 - 100

Table 2: Overview of possible Brightness values for different block shapes.

Tests have shown, that only values above 23 will be decoded properly and will only
be decoded properly if the limitations on Saturation and Hue are respected.

2.4 Type specifics (Saturation)

Values in Saturation are interpreted according to the block’s type. If possible, only high
Saturation values should be used, so that the type’s color remains recognizable.

Saturation is usually given in percent, most tools offer an integral selection out of
{0 . . . 100}.

Due to the rgb-hsb conversion, only values ≥ 50 are permitted, all types have to
accept a decoded value of ±1. Therefore, type specifics have to be encoded using a sparse
distribution of values within that range.

Durations Some types specify duration values. The values’ unit are seconds, all non-
user-triggered durations are synchronized across all game objects.

Stefan Neubert Teeter Level Encoding 4



Gameprogramming WS 13/14 Group Teetair

2.4.1 Trap (Hue 0)

Traps are subdivided into five Subtypes using the most significant digit as specified in
table 3.

Color example (standard ground) Base Saturation Trap type
90 Mine
80 Spring
70 Trapdoor
60 unused
50 Black hole

Table 3: Overview of Trap blocks

Mine The ball explodes. The offset out of {0, 3, 6} specifies the delay between the
collision of ball and mine and the explosion. 0 leads to immediate explosion, 3 delays for
a second and 6 for two seconds.

Spring The ball is catapulted in the air. The offset out of {0, 3, 6} specifies the strength
of the spring with higher being stronger.

Trapdoor An invisible hole opens. The offset out of {0, 3, 6} specifies the delay between
the collision of ball and trapdoor and the opening. 0 leads to immediate opening of the
door, 3 delays for a second and 6 for two seconds.

Black hole The ball is attracted to the block. The offset out of {0, 3, 6} specifies the
strength and radius of the attraction with higher being stronger and farther.

2.4.2 Item (Hue 45)

Items are subdivided into five Subtypes using the most significant digit as specified in
table 4.

Color example (standard ground) Base Saturation Item type
90 Gold bonus
80 Gold penalty
70 Life bonus
60 Life penalty
50 Anti-gravity

Table 4: Overview of Item blocks

Gold The player receives extra points. The offset out of {0, 3, 6} specifies the amount
of points awarded/lost with higher being more.

Stefan Neubert Teeter Level Encoding 5



Gameprogramming WS 13/14 Group Teetair

Life The player gets extra lives. The offset out of {0, 3, 6} specifies the amount of lives
granted/lost with higher being more.

Anti-gravity The ball ignores gravity for a while. The offset out of {0, 3, 6} specifies
the duration of the anti-gravity effect with higher being longer.

2.4.3 Standard (Hue 90)

A Standard block has no behavior and no properties except for it’s shape.

2.4.4 Checkpoint (Hue 135)

Checkpoints are subdivided into three kinds of blocks using the most significant digit as
specified in table 5.

Color example (standard ground) Base Saturation Type
100 Start
80 Checkpoint (mandatory)
70 Checkpoint (voluntary)
50 End

Table 5: Overview of Checkpoint blocks

Start There can only be one block of type Start on the whole level. It specifies the
coordinate where the ball is spawned.

Checkpoint Mandatory Checkpoints have to be visited before the level can be com-
pleted. Voluntary Checkpoints can be visited to collect additional points. The offset out
of {0, 3, 6} specifies the amount of awarded points with higher being more.

Finish As with Checkpoints there is no limit on Finish blocks. When the ball collides
with a Finish block, the player mastered the level. There might be Checkpoint blocks,
which he must visit before, though.

The offset out of {0, 3, 6, 9, 12, 15, 18} specifies the amount of awarded points for com-
pleting the level with higher being more.

2.4.5 Elevator (Hue 180)

A block of type Elevator moves up and down. It may be used to temporarily block or
unblock a path, or to lift the ball on a higher plane.

The Brightness-specified shape always applies to the initial position of the elevator.
The customization describes the mode of moving up and down and the movement

interval as specified in table 6.
All Elevators will react to buttons in the same group, however those which move

duration-based will additionally move up and down periodically.
One of the following values of table 7 is added to the base value to specify the direction

and magnitude of the movement.

Stefan Neubert Teeter Level Encoding 6



Gameprogramming WS 13/14 Group Teetair

Color example (standard ground) Base Saturation movement
75 only triggered
50 duration-based

Table 6: Overview of Elevator blocks

Offset value 0 3 6 9 12 15 18 21
Movement value -4 -3 -2 -1 1 2 3 4

Table 7: Overview of movements for Elevators

2.4.6 Ghost (Hue 225)

A block of type Ghost appears and disappears. It may for example be used to toggle a
coordinate between hole and ground.

The customization describes the initial state and the mode of (dis-)appearing (table 8).

Color example (standard ground) Base Saturation Initial state state changes
100 present only triggered
80 present duration-based
70 hidden only triggered
50 hidden duration-based

Table 8: Overview of Ghost blocks

The higher the value the longer is a state’s duration. Therefore the highest values can
be seen as "‘infinite"’. All Ghosts will react to buttons in the same group.

The base value of initially present Ghosts is 80, the base value of initially hidden
Ghosts is 50. One of the possible offsets of table 9 is added to the base value to specify
the duration.

Offset value 0 3 6 9 12 15 20
Duration value 0.5 1 1.5 2 2.5 3 Infinite

Table 9: Overview of duration offsets for Ghosts

2.4.7 Button (Hue 270)

A Button triggers the effect of another Block with the same identifier.
Buttons are subdivided into three kinds of blocks using the most significant digit as

specified in table 10.

Trigger Once activated, a trigger will become non-reactive.

Stefan Neubert Teeter Level Encoding 7



Gameprogramming WS 13/14 Group Teetair

Color example (standard ground) Saturation Type
100 Trigger

6X-8X Push-Button
50 Switch

Table 10: Overview of Button blocks

Push-Button A push-button snaps back in it’s initial state after a short time.
The base value of a push-button is 60. One of the following offsets of table 11 is added

to the base value to specify the duration.

Offset value 0 3 6 9 12 15 18 21 24 27
Duration value 1 2 3 4 5 6 7 8 9 10

Table 11: Overview of duration offsets for push-buttons

Switch A switch toggles it state. To avert flickering, there is a short non-reactive time
after a switch was toggled.

2.4.8 Portal (Hue 315)

A Portal creates a wormhole between two Blocks. The wormhole lets a ball that falls into
it jump out of the connected second Portal. Note that if there are more than two Portals
with the same identifier, the target portal will be randomly chosen.

Customization via Saturation specifies, on which of the block’s sides the portal’s en-
try/exit is, as specified in table 12.

Color example (standard wall) Base Saturation Active side (OSG axis)
90 +x (right)
80 -x (left)
70 +y (back)
60 -y (front)
50 +z (top)

Table 12: Overview of Portal blocks

Additionally, an offset value out of {0, 3, 6} added to the base Saturation specifies how
much the portal attracts balls near to its entrance. 0 deactivates attraction.

Portal blocks should preferably be height blocks (without gradient) of heights >2,
because the entrance will always be about 2 high (downward from the block’s maximum
height on the entrance’s side) and occupy the space in the given direction. Portals with
top orientation may have any shape, because their entrance is always extruded in +z
direction, where it should not interfere with any other block.

Deviation from this recommendation might result in very unexpected behavior.

Stefan Neubert Teeter Level Encoding 8



Gameprogramming WS 13/14 Group Teetair

2.5 Identifiers (Alpha)

Identifiers are encoded using the Alpha channel. If sufficient, only high values should be
used, to keep the color as opaque as possible. Normally the Alpha values are ranged in
{0 . . . 255} with 255 being opaque and 0 being transparent.

Identifiers are not thought to identify one block, but are designed to group related
blocks, such as a Button and a Ghost or two Portals.

Stefan Neubert Teeter Level Encoding 9


	Introduction
	Encoding
	General structure
	Available Types (Hue)
	Shape (Brightness)
	Type specifics (Saturation)
	Trap (Hue 0)
	Item (Hue 45)
	Standard (Hue 90)
	Checkpoint (Hue 135)
	Elevator (Hue 180)
	Ghost (Hue 225)
	Button (Hue 270)
	Portal (Hue 315)

	Identifiers (Alpha)


